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Abstract

We apply the observability rank condition to the two-dimensional
Doi orientation tensor model to investigate the observability of liquid
crystalline polymers under imposed shear or extensional flows. Here
the observability means the ability of determining the orientation ten-
sor from the time history of the observations of the birefringence. The
Doi model under shear or extensional flow is observable almost every-
where. In other words, all components of the orientation tensor can be
determined from the observation of the birefringence provided that the
points formed by the two components of the orientation tensor do not
lie on certain curves in the plane. We also run simulations using the un-
scented Kalman filter (UKF) to reconstruct the orientation tensor from
observations without and with noises. The UKF gives good estimates
for the orientation tensor both in the absence and in the presence of
observation noises.

1 Introduction

Observability of a dynamic system is a very useful subject in control theory

[3]. It means the ability to determine uniquely the state of the system from

observable quantities [5, 8]. In practice, noise may occur in both the obser-

vations and the system dynamics. If the system is not observable, then it is

hopeless to get an accurate estimate of the state or to guide the system to

a desirable final state. So from a practical point of view, it is important to

investigate the observability of a dynamical system.

In this work we extend our previous study on the observability of viscoelas-

tic fluids [8] to the observability of the Doi orientation tensor model in liquid
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338 Hong Zhou

crystalline polymers. We impose the velocity field and assume monodomain

structure. We further assume the birefriengence is measured in experiments,

which is consistent with light scattering measurements. Our goal is to infer the

full orientation tensor from measurements, if possible. To do so, we apply the

observability rank condition to investigate the short time local observability of

the Doi orientation tensor model under imposed extensional or shear flow.

The outline of this paper is as follows. We present a brief overview of

the observability of dynamical sytems and the observability rank condition in

Section 2. In section 3 we focus on the analysis of the observability of the

Doi orientation tensor model under shear or extensional flow. We carry out

some numerical experiments where the performance of the unscented Kalman

filter is examined both in the case of zero observation noise and in the case of

Gaussian observation noise in Section 4. We summarize our work in Section

5.

2 Observability rank condition of dynamical

systems

For reader’s convenience, we quickly recall the observability of dynamical

systems and observability rank condition [8].

Consider a dynamical system without control input:

ẋ = f(x), x ∈ Rn (1)

y = h(x), y ∈ Rp (2)

x(0) = x0, (3)

where x is the state variable, y is the quantity that can be observed experi-

mentally. Functions f and h are assumed to be sufficiently smooth. The state

x is not observed directly but the output y is. We would like to know whether

it is possible to determine the initial state x0 from the output history y(0 : ∞)

where the symbol y(0 : T ) denotes the trajectory t → y(t) with 0 ≤ t < T .

If the map x0 → y(0 : ∞) is one to one, then one can reconstruct x0 from

y(0 : ∞) mathemematically and the system (1)-(2) is called observable. Since

x(t) can be treated as the initial state for evolutions after time t, the observ-

ability indicates that x(t) can be reconstructed from y(0 : ∞) as well.

Other definitions of observability are also possible. The most useful and

easiest to measure one is short time local observability. A system is short time

locally observable if for every T > 0, the map x0 → y(0 : T ) is locally one
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to one. Mathematically speaking, locally one to one means that for each x0,

there is a neighborhood U(x0) such that if x1 ∈ U(x0), then the output from

x1 and the output from x0 are different. Now we recall a sufficient condition

for the short-time local observability [5].

We begin with some notations. Note that from (2) and (3) we have y(0) =

h(x0) and thus
dy

dt
(0) =

∂h

∂x
(x0)f(x0) (4)

using the chain rule and (1). The right hand side of (4) is called the Lie

derivative of the function h by the vector field f :

Lf (h)(x) =
∂h

∂x
(x)f(x). (5)

Since the Lie derivative is another function from Rn to Rp, one can repeat the

process of taking the Lie derivative:

L2
f (h)(x) = Lf (Lf (h))(x) = Lf (

∂h

∂x
(x)f(x))

Lk
f (h)(x) = Lf (L

k−1
f (h))(x).

A set of functions g1(x), · · ·, gk(x) is said to separate points if given any pair

of two points x0 and x1, there is at least one gi(x) such that gi(x
0) �= gi(x

1). If

g1(x), · · ·, gk(x) separate points, then the map x → (g1(x), · · · , gk(x)) is one to

one. Mathematically, if the functions Lj
f (h)(x), j = 0, · · · , k, locally spearate

points in Rn for some k, then the system is short time locally observable. A

sufficient condition for this to happen is that the so-called one forms

dhi(x), · · · , dLk
f (hi)(x), i = 1, · · · , p

span n dimensions at every x where

dhi(x) =
n∑

j=1

∂hi

∂xj

(x)dxj = (
∂hi

∂x1

, · · · , ∂hi

∂xn

). (6)

Now we introduce the definition of observability rank condition (ORC).

Definition 2.1 The system (1)-(2) satsifies the observability rank condition at

x0 if there exists a k such that
{
dLj

f (hi) : j = 0, · · · , k; i = 1, · · · , p} has rank

n. The system (1)-(2) satisfies the observability rank condition if it satisfies it

at every x ∈ Rn (note k may vary with x).



340 Hong Zhou

For linear systems, observability rank condition (ORC) leads to global

short-time observability as well. For nonlinear systems, ORC is a sufficient

condition of short-time local observability. In addition, ORC is almost a

necessary condition for short-time local observability. It has been shown

HermannKrennerthatiftheORCisviolatedonanopensubsetofRn, then the sys-

tem (1)-(2) is not short time, locally observable.

In the next section we would like to apply the observability rank condition

to investigate the observability of the Doi orientation tensor model in the study

of liquid crystalline polymers.

3 The Doi orientation tensor model

The Doi orientation tensor model for rodlike liquid crystalline polymers in

a solvent is well-known for its capability to describe both the isotropic and

nematic phases and phase transition between them [6]. A fundamental part of

this model is the single molecule orientation distribution function. Interactions

between molecules are represented by a mean-field potential (so-called Maier-

Saupe potential). The rodlike molecules are also subject to Brownian force

due to the fact that they interact with other rodlike molecules and with the

flow.

Basically, the model is a microscopic Smoluchowski equation or Fokker-

Planck type equation for the dynamics of the orientational distribution func-

tion coupled with a macroscopic hydrodynamic equation [1]. The Smolu-

chowski equation describes the convection, rotation and diffusion of the rodlike

molecules. The full Doi orientation tensor theory is developed after the kinetic

Smoluchowski equation is projected onto a second-moment description using

various closure rules. The major element in this tensor theory is the second-

moment tensor Q which describes the orientational distribution of the ensemble

of rodlike macromolecules. The orientation tensor is traceless and symmetric.

The physical and practical significance of the orientation tensor is that it is

the basis for micro-scale light scattering measurements of primary axes (“di-

rectors”), degrees of molecular alignment (“birefringence”), and normal and

shear stress measurements.

Here we restrict our attention to two-dimensional monodomain structure.

The study of two-dimensional liquid crystal polymers has been physically in-

spired by monolayer films. Thin films of liquid crystal polymers have been

used as alignment layers for liquid crystal displays because of their stability

and nonlinear optical properties. A lot of theoretical and experimental studies
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have been devoted to the two-dimensional Doi model (for example, see [7] and

references therein).

The two-dimensional Doi model is given by [7]

d

dt
Q = ΩQ −QΩ + a[DQ + QD] + aD− 2aD : Q(Q +

I

2
) − 6DrF (Q), (7)

where Q is the 2 × 2 orientation tensor such that

Q =

[
Q11 Q12

Q21 Q22

]
, Q11 = −Q22, Q12 = Q21;

Ω is the vorticity tensor such that Ω = 1
2
[∇v − ∇vT ]; a is a dimensionless

parameter which depends on the molecular aspect ratio; D is the rate-of-strain

tensor D = 1
2
[∇v + ∇vT ]; Dr is the averaged rotary diffusivity or relaxation

rate; F (Q) is defined by

F (Q) = (1 − N

2
)Q − NQ2 + NQ : Q(Q +

I

2
)

and N is a dimensionless concentration of nematic polymers.

3.1 The Doi model under extensional flow

When an extensional flow with rate γ̇ is imposed to the monodomain of

liquid crystalline polymers, the velocity field can be expressed as

v = (γ̇(t)
x

2
,−γ̇(t)

y

2
), (8)

and the velocity gradient is

∇v =

⎡
⎢⎣

γ̇(t)

2
0

0 − γ̇(t)

2

⎤
⎥⎦ . (9)

After applying the gradient of the homogeneous extensional flow (9) to the Doi

system (7), we obtain

Q̇11 = −6Dr

[
(1 − N

2
)Q11 + 2NQ11(Q

2
11 + Q2

12)
]
+ a(1

2
− 2Q2

11)γ̇(t),

Q̇12 = −6DrQ12

[
(1 − N

2
) + 2N(Q2

11 + Q2
12)
]− 2aQ11Q12γ̇(t).

(10)

Using the nematic relaxation time scale 1
Dr

, the flow field and orientation dy-

namics of (7) can be non-dimensionalized. The key dimensionless parameters
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are then the Peclet number Pe = γ̇/Dr (the shear rate normalized with respect

to nematic relaxation rate) and the dimensionless concentration parameter N .

Rescaling time as t̄ = tDr, the nematodynamic model (7) in the dimensionless

form becomes

Q̇11 = −6Q11

[
1 − N

2
+ 2N(Q2

11 + Q2
12)
]
+ a(1

2
− 2Q2

11)Pe,

Q̇12 = −6Q12

[
1 − N

2
+ 2N(Q2

11 + Q2
12)
]− 2aQ11Q12Pe.

(11)

More succinctly, the system (11) can be written as

d�x

dt
= �f(�x),

where

�x =

[
x1

x2

]
=

[
Q11

Q12

]
,

�f(�x) =

[
f1

f2

]
= −6

[
1 − N

2
+ 2N(x2

1 + x2
2)
]
�x + a Pe

⎡
⎣ 1

2
− 2x2

1

−2x1x2

⎤
⎦ .

(12)

In the light scattering experiments one can measure the birefringence, which

corresponds to the difference of the two eigenvalues of Q. Since the two eigen-

values of Q are λ1,2 = ±√Q2
11 + Q2

12, their difference is 2
√

Q2
11 + Q2

12. For

computational convenience, we assume the observation is h ≡ Q2
11 + Q2

12 =

x2
1 + x2

2 .

The Lie bracket is

L�f
�h =

∂�h

∂xi
(�x)fi(�x) =

[
∂h

∂x1
,

∂h

∂x2

] [
f1

f2

]

= [2x1, 2x2]

[
f1

f2

]
= 2 (x1 f1 + x2 f2)

= −12x2
1 + 6Nx2

1 − 24Nx4
1 − 48Nx2

1x
2
2 + aPex1

−4aPex3
1 − 12x2

2 + 6Nx2
2 − 24Nx4

2 − 4aPex1x
2
2

(13)

After some algebra, one has

det

(
∂
∂�x

[
�h

L�f
�h

])
= det

[
2x1 2x2

c1 c2

]

= 2aPex2(4x
2
1 + 4x2

2 − 1),

(14)



Observability of the Doi orientation tensor model 343

where

c1 = −24x1 + 12Nx1 − 96Nx3
1 − 96Nx1x

2
2 + a Pe − 12a Pex2

1 − 4a Pex2
2,

c2 = −96Nx2
1x2 − 24x2 + 12Nx2 − 96Nx3

2 − 8a Pex1x2.
(15)

So if x2
1 + x2

2 �= 1/4 and x2 �= 0, then the determinant is nonsingular and

consequently the observability rank condition (ORC) is satisfied. In other

words, if the two components of the orientation tensor Q satisfies the conditions

Q2
11 + Q2

12 �= 1/4 and Q12 �= 0, then the Doi model under extensional flow is

short time locally observable.

In Figure 1 we plot the two curves described by x2 = 0 and x2
1 + x2

2 = 1/4,

respectively in the x1 − x2 plane.. The Doi model under extensional flow is

short time, locally observable as long as the point (Q11, Q12) does not lie on

these two dashed curves.

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x
1

x
2

Figure 1: The curves where the determinant in (14) vanishes. The Doi model

under extensional flow is observable for all components Q11 and Q12 of the

orientation tensor when the point (Q11, Q12) doesn’t lie on these curves.
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3.2 The Doi model under shear flow

The velocity field of a shear flow with rate γ̇ is described by

v = γ̇(t)(y, 0) (16)

The rate-of-strain tensor is

D =
1

2
[∇v + (∇v)T ] =

γ̇(t)

2

[
0 1

1 0

]
. (17)

We non-dimensionalize the flow field and orientation dynamics using the ne-

matic relaxation time scale 1/Dr. The dimensionless parameters consist of the

Peclet number Pe = γ̇(t)/Dr which is the shear rate normalized with respect

to nematic relaxation rate, and the dimensionless concentration parameter N .

From now on, we work in dimensionless time t̄ = tDr.

The nematodynamic Doi model (7) in component form is

Q̇11 = −6Q11

[
1 − N

2
+ 2N(Q2

11 + Q2
12)
]
+ (Q12 − 2aQ11Q12)Pe,

Q̇12 = −6Q12

[
1 − N

2
+ 2N(Q2

11 + Q2
12)
]
+ (−Q11 + a

2
− 2aQ2

12)Pe.
(18)

Introducing

�x =

[
x1

x2

]
=

[
Q11

Q12

]
,

the system (18) has the simple form

d�x
dt

= �f(�x),

�f(�x) =

[
f1

f2

]
= −6

[
1 − N

2
+ 2N(x2

1 + x2
2)
]
�x + Pe

⎡
⎣ x2 − 2ax1x2

−x1 + a
2
− 2ax2

2

⎤
⎦ .

(19)

As before, assume the the observation is related to the birefringence and

has the form h ≡ Q2
11 + Q2

12 = x2
1 + x2

2 .

The Lie bracket is

L�f
�h =

∂�h

∂xi
(�x)fi(�x) =

[
∂h

∂x1
,

∂h

∂x2

] [
f1

f2

]

= [2x1, 2x2]

[
f1

f2

]
= 2 (x1 f1 + x2 f2)

= −12x2
1 + 6Nx2

1 − 24Nx4
1 − 48Nx2

1x
2
2 − 4a Pex2

1x2

−12x2
2 + 6Nx2

2 − 24Nx4
2 + x2 a Pe − 4a Pex3

2.

(20)
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It follows that

det

(
∂

∂�x

[
�h

L�f
�h

])
= det

[
2x1 2x2

d1 d2

]
= −2aPex1(4x

2
1 + 4x2

2 − 1), (21)

where

d1 = −24x1 + 12Nx1 − 96Nx3
1 − 96Nx1x

2
2 − 8a Pex1x2,

d2 = −96Nx2
1x2 − 4 a Pex2

1 − 24x2 + 12Nx2 − 96Nx3
2 + a Pe − 12a Pex2

2.
(22)

Therefore, if x1 �= 0 and x2
1 +x2

2 �= 1/4, then the matrix is nonsingular and the

ORC is satisfied. Said differently, if Q11 �= 0 and Q2
11 + Q2

12 �= 1/4, then the

Doi model under shear flow is short time locally observable.

We plot the two curves described by x1 = 0 and x2
1 +x2

2 = 1/4, respectively

in the x1 − x2 plane in Figure 2. The Doi model under shear flow is short

time, locally observable as long as the point (Q11, Q12) does not lie on these

two curves.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

Figure 2: The curves where the determinant in (21) becomes zero. The Doi

model under shear flow is observable for all components Q11 and Q12 of the

orientation tensor when the point (Q11, Q12) doesn’t lie on these curves.
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4 Unscented Kalman filtering (UKF) of the

Doi model

The observability of a dynamic system, as studied above, provides the

mathematical possibility of recovering the state of the system from observable

quantity. However, the concept of observability itself does not provide the

mechanism to practically extract the state from observations. In contrast,

Kalman filter is a widely used tool to estimate the state using observation

data for systems with observability.

Now we want to investigate the performance of the unscented Kalman fil-

tering [4] in recovering the orientation tensor from the observed birefringences.

We refer the readers to the original paper by Julier, Uhlmann and Durrant-

Whyte [4] for a complete description of the unscented Kalman filtering. UKF

is a popular choice when the state transition and observation models are highly

nonlinear. However, a rigorous proof on its convergence is still open. In this

section we will examine two cases: (1) the observation is noiseless and (2) the

observation is polluted by Gaussian noise. We select the Doi model under

shear flow as the testbed. Similar results are obtained for the Doi model under

extensional flow which are omitted here.

To examine UKF for a non-steady state solution of the Doi model under

shear flow, we add an external force[
0.1 sin(t)

0.1 cos(t)

]
(23)

to the right-hand side of equation (11). We remark that the observability study

in the previous section is still valid here.

We start the system of Doi model under extensional flow (11) with the

external force (23) at some initial condition �x(0) and the filter at a different

initial condition �̂x(0). We solve the system equations without noise to get state

�x(0 : ∞) and observation h(0 : ∞) trajectories. In the case of observations

with no noise, we pass the noise free observation trajectory to the filter and

the filter yields a state estimate trajectory �̂x(0 : ∞). The estimation error

�x(t) − �̂x(t) is the difference between the state of the system (which is not

directly measurable) and the estimate state produced by the filter from the

observation. The filter is said to be convergent if the estimation error goes to

zero as t → ∞ for any �x(0) and �̂x(0).

In Figure 3 we show the results of UKF for the Doi model under shear flow.

The parameters used here are N = 4.0, Pe = 0.01, and a = 0.8. Figure 3(a)
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depicts the exact and estimated solutions of the Doi system under shear flow,

respectively. Figure 3(b) gives the corresponding filter errors. It implies the

convergence of the UKF when there is no noise but only initial estimate error.

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

estimated Q
11

exact Q
11

estimated Q
12

exact Q
12

0 5 10 15
10

−3

10
−2

10
−1

10
0

estimate error in Q
11

estimate error in Q
12

(a) (b)

Figure 3: (a) Exact solutions (solid lines) and estimated solutions from UKF

(dashed or dotted line) of the Doi model under shear flow with an external

force. (b) Corresponding filter errors of UKF in (a).

In practice all observations may be polluted by noises from different sources.

Next we check the performance of UKF in the presence of observation noise.

We add Gaussian noise to the measurements. Specifically, we assume that the

experimental measurement is the true value of the observation plus Gaussian

noise:

hexperiment(0 : ∞) = h(0 : ∞) + Gaussian noise.

Then we pass the observation with noise hexperiment(0 : ∞) to the filter.

The filter outputs an estimated state. Figure 4 depicts the results of UKF

for the Doi model under shear flow. Figure 4(a) gives the measurement with

noises (the solid line) vs the measurement without noise (dashed line) whereas

Figure 4(b) isolates the noise added to the observation. The exact solutions and

estimated solutions from UKF are plotted in Figure 4(c) and the corresponding

filter errors are given in Figure 4(d). It is clear that UKF yields good estimate

even when noises are present in the measurements.
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5 Conclusions

We have applied the observability rank condition to the vector fields in the

Doi orientation tensor model to investigate the short time local observability

of liquid crytalline polymers driven by extensional or shear flow fields. The

measurement is assumed to be birefringence of the materials which is consistent

with experiments. We have found that the Doi model is observable almost

everywhere. That is, one can determine the orientation tensor from the time

history of the observations of birefringence when the points formed by the two

components of the orientation tensor do not lie on certain curves in the plane.
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Figure 4: (a) Observation with Gaussian noise (solid line) vs observation with-

out noise (dashed line). (b) The Gaussian noise in (a). (c) Exact solutions

(solid lines) and estimated solutions from UKF (symbols) of the Doi model

under shear flow with an external force where observations contain Gaussian

noise. (d) The corresponding filter errors of (c).


